Best ever measurement of how the universe has cooled since the Big bang

PRESS RELEASE: Astronomers have put the Big bang theory through a tough new test - by measuring the temperature of the universe when it was half as old as it is now.

​A team of scientists led by Sebastien Muller (Chalmers University of Technology and Onsala Space Observatory) has made the most precise measurement ever of how the universe has cooled down during its 13.77 billion year history.
 
They studied molecules in clouds of gas in a distant galaxy, so far away that its light has taken half the age of the universe to reach us. To make the measurement they used the CSIRO Australia Telescope Compact Array, an array of six 22-metre radio telescopes in eastern Australia.
 
"When we look at this galaxy with our telescopes, we see it as it was when the universe was younger - and warmer - than it is now", says Sebastien Muller.
 

Radio waves (yellow lines) from a bright quasar pass through a galaxy where they are absorbed by molecules in a cold cloud of gas. Astronomers used radio telescopes to measure the temperature of the universe 7.2 billion years ago, by measuring the signatures of the molecules in the radio waves.
Image credit: Onsala Space Observatory/R. Cumming/S. Muller
 
The astronomers used a clever new method to measure the temperature of the cosmic microwave background – the very weak remnant of the heat of the Big bang that pervades the entire universe. They observed radio waves from molecules in a galaxy so far away that its light has taken 7.2 billion years to reach us.
 
“The gas in this galaxy is so rarefied that the only thing keeping its molecules warm is the cosmic background radiation – what’s left of the Big bang”, says Sebastien Muller.
 
Taking advantage of a lucky alignment, the team measured light from an even more distant source behind the galaxy, a quasar known as PKS 1830-211. The quasar is a young galaxy which shines brightly because of jets from a supermassive black hole at its centre.
 
“We analysed radio waves from the quasar which had passed through the gas in the galaxy. In the radio waves, we could identify traces of many different molecules”, says Sebastien Muller.
 
Using a sophisticated computer model, the astronomers used these molecular signatures, left like fingerprints in the light from the quasar, to measure the temperature in the gas clouds in the intervening galaxy.
 
The temperature of the cosmic background radiation they measured was 5.08 Kelvin (+/- 0.10 Kelvin). This is extremely cold, but significantly warmer than the temperature which scientists measure in today's universe, 2.73 Kelvin. Scientists measure temperatures in Kelvin above absolute zero (0 Kelvin = -273 degrees Celsius). One Kelvin is the same size as one degree Celsius.
 
"The temperature of the cosmic background radiation in the past has been measured before, at even larger distances. But this is the most precise measurement yet of the ambient temperature when the universe was younger than it is now", says Alexandre Beelen, astronomer at the Institute for Space Astrophysics at the University of Paris, France.
 
According to the Big bang theory, the temperature of the cosmic background radiation drops smoothly as the universe expands.
 
"That's just what we see in our measurements. The universe of a few billion years ago was a few degrees warmer than it is now, exactly as the Big bang theory predicts", concludes Sebastien Muller.
 
 
In this image, the NASA/ESA Hubble Space Telescope sees the distant quasar PKS 1830-211 as a red point of light among faint stars in our own galaxy, the Milky Way. Astronomers have analysed radio waves from the quasar which passed through a cold gas cloud in a faint spiral galaxy on their 7.2 billion-year journey to Earth. Molecules in the gas cloud are heated only by the cosmic microwave background. The galaxy is just perceptible below the red quasar image. Another, closer, spiral galaxy lies just below this. The image was created using two of the Hubble Space Telescope’s cameras: WFPC2 with filters F555W (green light) and F814W (near-infrared), and NICMOS with filter F160W (infrared). For more information see Courbin et al. 2002, doi:10.1086/341261.
Credit: NASA/ESA/E. Falco/F. Courbin
 
 
More about cosmic distances and cosmic background radiation
Light and radio waves travel at a finite speed, 300 000 kilometres per second. This means that astronomers can study the universe as it was long ago by observing distant objects in the sky. The team observed molecular gas in a galaxy whose distance is such that its light has travelled 7.2 billion years (7.2 thousand million years) to reach us. This corresponds to a so-called redshift of 0.89. The quasar whose light is absorbed by the molecules in the galaxy lies further away, at redshift 2.5 (which means its light has taken 11 billion light years to reach us). The observations were possible because the galaxy itself magnifies the light from the quasar according to Einstein’s general theory of relativity, that is, the galaxy is a so-called gravitational lens.
 
The cosmic microwave background radiation, a faint glow seen over the whole sky at microwave frequencies by radio telescopes, was discovered in 1957, and has led to two Nobel prizes in Physics 1964 and 2006.

More about the telescope
The Australia Telescope Compact Array (ATCA), is a group of six radio-receiving dishes near Narrabri in New South Wales, Australia, that work together as one telescope. It is one of the most advanced telescopes of its kind. The ATCA is run by CSIRO, the Commonwealth Scientific and Industrial Research Organisation, which is Australia's national science agency.
 

More about the research
This research is published in a paper, A precise and accurate determination of the cosmic microwave background temperature at z=0.89, by S. Muller et al., in the journal Astronomy & Astrophysics. The paper is available online at http://dx.doi.org/10.1051/0004-6361/201220613
 
The team consists of Sebastien Muller (Onsala Space Observatory at Chalmers University of Technology, Gothenburg, Sweden), A Beelen (Institut d'Astrophysique Spatiale, Université Paris-Sud, Orsay, France), John H. Black (Chalmers University of Technology), Stephen J. Curran (University of Sydney, Australia), Cathy Horellou (Chalmers University of Technology), Susanne Aalto (Chalmers University of Technology), Francoise Combes (Observatoire de Paris, France), Michel Guélin (Institut de Radioastronomie Millimétrique, France) and C. Henkel (Max-Planck-Institut für Rasioastronomie, Bonn, Germany).
 

More about Onsala Space Observatory
Onsala Space Observatory is Sweden's national facility for radio astronomy. The observatory provides researchers with equipment for the study of the earth and the rest of the universe. In Onsala, 45 km south of Gothenburg, it operates two radio telescopes and a station in the international telescope Lofar. It also participates in several international projects. The observatory is hosted by Department of Earth and Space Sciences at Chalmers University of Technology, and is operated on behalf of the Swedish Research Council.
 

Contacts:
Robert Cumming, astronomer and communications officer, Onsala Space Observatory at Chalmers University of Technology, +46-31-772 55 00 or +46-70-493 31 14, robert.cumming@chalmers.se
Sebastien Muller, astronomer, Onsala Space Observatory at Chalmers University of Technology, +46-31-772 55 33, sebastien.muller@chalmers.se
Cathy Horellou, astronomer, Onsala Space Observatory at Chalmers University of Technology, +46-31-772 55 04, cathy.horellou@chalmers.se
 
 
Caption, top image: The Australia Telescope Compact Array
Credit: CSIRO