New project on imaging biomarkers for drug safety assessments

The Innovative Medicines Initiative (IMI) has approved the 5-year project TRISTAN focusing on validation of translational imaging methods as potential imaging biomarkers.

TRISTAN (Translational Imaging in Drug Safety Assessment) is a public-private partnership supported by the Innovative Medicines Initiative (IMI) and involving 21 organisations including academics centres, research organisations, small and mediumsize enterprises (SMEs), imaging and pharmaceutical companies.

TRISTAN is a significant investment in imaging research in West Sweden. Other West Sweden collaborators in addition to Chalmers include Västra Götalands Region, Sahlgrenska Academy and Antaros Medical, who are all working to avoid toxicity in humans during drug development.

The objective of the project is to validate or qualify translational imaging methods as potential imaging biomarkers. The imaging biomarker qualification will be specifically addressed in three areas with a high unmet medical need: the assessment of liver toxicity, lung toxicity and the bio-distribution of biologics. The in-kind contributions to the project of around EUR 12 million by the industrial partners are complemented by IMI-funding in a total budget of EUR 24 million. TRISTAN is led by Bayer and coordinated by the European Organisation for Research and Treatment of Cancer (EORTC), who also leads one imaging biomarker qualification study for cancer drug induced interstitial lung disease.

Imaging techniques are firm components of today’s medical practices, just as the use of biomarkers has become commonplace in pre-clinical and clinical research. However, imaging biomarkers are not widely used in the drug discovery process although they could advance drug safety evaluation, both for pre-clinical and clinical development. Imaging biomarkers have the potential to improve translatability of pre-clinical (animal) data to healthy volunteers and patients and thus could help avoid late stage attrition of development programmes. In addition, functional diagnostic imaging methods used as biomarkers would offer the possibility to confirm drug toxicity mechanisms in humans, including the potential to determine drug-drug interactions.
 
Data relevant for validation of methods addressed in the project and aggregated data will be made publicly available in compliance with data privacy laws. Significant interactions with existing imaging biomarker initiatives as well as with regulatory authorities will have a strong impact on the future value of imaging biomarker procedures. To sustainably offer access to the validated imaging biomarkers, the three project SME partners are planning to offer respective biomarker imaging services commercially.








“We are very proud of being a partner in the TRISTAN consortium and that our MRI-models are used to find biomarkers to better predict toxicity in humans in drug development", says Paul Hockings, Adjunct Professor at Chalmers University of Technology and at MedTech West, and Per Malmberg, researcher in Analytical Chemistry at Chalmers University of Technology.
 
About Imaging Biomarkers
An imaging biomarker is a functional radiographic imaging procedure utilising imaging modalities like Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET). In research and development, imaging biomarkers are used as characteristics to objectively measure biological processes, pathological changes, or pharmaceutical responses to a therapeutic intervention. They have the advantage of remaining non-invasive and being spatially and temporally resolved. Imaging biomarkers have the potential to improve translatability of animal data to healthy volunteers and patients, thereby helping to improve our understanding of drug mechanisms, interactions and metabolic processes.

About the Innovative Medicines Initiative (IMI)
The Innovative Medicines Initiative (IMI) is working to improve health by speeding up the development of, and patient access to, innovative medicines, particularly in areas where there is an unmet medical or social need. It does this by facilitating collaboration between the key players involved in healthcare research, including universities, the pharmaceutical and other industries, small and medium-sized enterprises (SMEs), patient organisations, and medicines regulators. IMI is a partnership between the European Union and the European pharmaceutical industries, represented by the European Federation of Pharmaceutical Industries and Associations (EFPIA). Through the IMI 2 programme, IMI has a budget of EUR 3.3 billion for the period 2014-2024. Half of this comes from the EU’s research and innovation programme, Horizon 2020. The other half comes from large companies, mostly from the pharmaceutical sector; these do not receive any EU funding, but contribute to the projects ‘in kind’, for example by donating their researchers’ time or providing access to research facilities or resources.

The research leading to these results received funding from the Innovative Medicines Initiatives 2 Joint Undertaking under grant agreement No 116106. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA.

Partners in TRISTAN
The project is coordinated and led by:
European Organisation for Research and Treatment of Cancer, EORTC (Coordinator)
Bayer (Lead)
Bioxydyn (Co-coordinator)
GlaxoSmithKline (Co-lead)

Other partners
AbbVie
Antaros Medical
Bruker Chalmers University of Technology
Université de Bourgogne Dijon
GE Healthcare 
University Medical Center Groningen
University of Leeds
Lund University
University of Manchester
MSD
Radboud University Nijmegen 
Novo Nordisk
Pfizer
Sanofi
University of Sheffield/Sheffield Teaching Hospitals NHS Trust
Truly Labs
 
More info on IMI: www.imi.europa.eu 
To contact TRISTAN: contact@imi-tristan.eu 
More info on MedTech West, a western Sweden based organization for medtech research & development driven by clinical need: www.medtechwest.se

Published: Wed 12 Apr 2017. Modified: Thu 20 Apr 2017