Physics students awarded for a promising foetal monitoring method

​Two master's students at Chalmers have developed a method for distinguishing a foetus's heartbeat from the mother’s. It is based on analysing electrical signals that are present naturally in the skin of the mother. These are picked up by electrodes. The method is potentially more reliable and easier to use than current foetal monitoring using a CTG device. The students have been awarded the Bert-Inge Hogsved Prize for Best Entrepreneurship by the Forum for Engineering Physicists at Chalmers. ​
“Cardiotocography, or CTG, is a well-established monitoring method in maternity care. However, it is not always reliable. There is a risk that signals are picked up from the mother's heart rather than the foetus’s, which can have serious consequences. Our way of measuring is potentially more precise, thanks to the advanced electrodes that are now available. We can measure and, using our specially developed analysis, distinguish the foetus’s heartbeat, which can be hundreds of times weaker than the mother’s at the end of pregnancy,” says Albin Annér, one of the prizewinners.        
 
The electrodes measure electrical fields in the skin. Unlike with a CTG device, however, they need not be fixed directly onto the skin. The mother does not have to be closely connected to a device, giving her greater freedom of movement. The method is also completely harmless because no current flows between the mother and the electrodes. 
 
“Their method is very promising. It could reduce the uncertainties around foetal monitoring and make maternity care safer and simpler in Sweden and internationally,” says Peter Apell, Professor of Living State Physics at Chalmers and the students' co-supervisor with Senior Lecturer Lars Hellberg. 
 
The two students are developing the concept as part of the Master's programme in Applied Physics at Chalmers. They are now working on developing a solution suitable for use in a clinical study.
 
“The goal is for our method to replace CTG devices in the long term. The equipment will be lighter, considerably cheaper and smaller, which means it will be more widely available and easily portable. It will be able to be used not only in hospitals but also out in the field, for example in countries with poor access to established healthcare services,” says David Kastö, fellow prizewinner and student with Albin Annér.
 
The prize was established in 2011 by Bert-Inge Hogsved, founder and CEO of the Hogia Group and himself an engineering physicist. Students in engineering physics, engineering mathematics or chemical engineering with physics at Chalmers are eligible for the annual prize. It aims to recognise entrepreneurial initiative among students.


Published: Tue 12 Mar 2019. Modified: Tue 13 Aug 2019