DeMeGRaS - Detection mechanisms in graphene radiation sensors


Partner Number


Institution/ Department

Principal Investigator (PI) 

Name of the co-Investigators

Other participants





Chalmers University of Technology/MC2

Prof. August  Yurgens


Post Doc




University of Regensburg/Faculty of Physics

Prof. Sergey Ganichev


Post Doc,

Visiting researchers




CNRS/ Laboratoire Charles Coulomb (L2C)

Dr. Frédéric Teppe

Prof. Michel Dyakonov

3 Research Engineers, Post Doc,  Visiting researchers



Motivation and plan: 

  • Two major detection mechanisms in graphene radiation sensors: (photo)thermoelectric- and plasma (Dyakonov-Shur, DS) mechanisms.

  • The same functional form – it is difficult to tell the mechanisms apart in the common geometries.

  • One goal is to use unusual device layouts, which favor only one mechanism at a time.

  • More clues from the THz ratchet effects and detection measurements in the magnetic field.

  • An eye on practical detectors; may be even realize a constructive action of the both mechanisms.


Data creation; switch to English and write “FLAG-ERA” or “DeMeGRaS” in the search field​.
Samples data from Chalmers:

Outreach and other activities: 

  • Travel grant of VW Stiftung supporting cooperation of German and Ukraine scientists
  • Regensburg 2 PhD both with great praise (S. Hubmann, M. Otteneder) plus one PhD almost finished (S. Candussio), Seminars, No exchange and travelling due to the pandemic.
  • Montpellier hired Ukrainian engineer to help the French research team and to develop his skills with novel and unique THz experimental setups in the frame of DeMeGras, and MUSE action of Montpellier University allows him to keep his job waiting for his next position.
  • Web page of the project: The inconvenience with having a long name of the homepage is compensated by the free support offered by Chalmers IT service. 
  • Graphene radiation detectors were included in the course Graphene science and technology (MCC130) of the Master’s program Nanotechnology (Chalmers University of Technology)


  1. A. Yurgens, Large Responsivity of Graphene Radiation Detectors with Thermoelectric Readout:Results of Simulations, Sensors 20, 1930 (2020);DOI: 10.3390/s20071930.
  2. S. Hubmann, V. V. Bel’kov, L. E. Golub, V. Y. Kachorovskii, M. Drienovsky, J. Eroms, D. Weiss, and S. D. Ganichev, Giant ratchet magneto-photocurrent ingraphene lateral superlattices, Phys. Rev. Res. 2, 033186 (2020); DOI: 10.1103/PhysRevResearch.2.033186.
  3. Y. Matyushkin, S. Danilov, M. Moskotin, V. Belosevich, N. Kaurova, M. Rybin, E. D. Obraztsova, G. Fedorov, I. Gorbenko, V. Kachorovskii, and S. Ganichev, Helicity-Sensitive Plasmonic Terahertz Interferometer, Nano Lett. 20, 7296 (2020); DOI: 10.1021/acs.nanolett.0c02692.
  4. Y. B. Vasiliev, S. N. Novikov, S. N. Danilov, and S. D. Ganichev, Terahertz Photoconductivity inGraphene in a Magnetic Field, Semiconductors 54, 465 (2020).
  5. K. A. Baryshnikov, Y. B. Vasilyev, S. Novikov, S. N. Danilov, and S. D. Ganichev, Terahertz photoconductivity enhancement in graphene in magnetic fields​​, J. Phys. Conf. Ser. (Institute of Physics Publishing, 2020), p. 12039; DOI: 10.1088/1742-6596/1482/1/012039 

  6. V. Galeeva, D. A. Belov, A. S. Kazakov, A. V. Ikonnikov, A. I. Artamkin, L. I. Ryabova, V. V. Volobuev, G. Springholz, S. N. Danilov, and D. R. Khokhlov, Photoelectromagnetic Effect Induced by Terahertz Laser Radiation in Topological Crystalline Insulators Pb1-xSnxTe, Nanomaterials 11, 3207 (2021), 11, 3207. DOI:

  7. Y. Matyushkin, S. Danilov, M. Moskotin, G. Fedorov, A. Bochin, I. Gorbenko, V. Kachorovskii, and S. Ganichev, Carbon nanotubes for polarization sensitive terahertz plasmonic interferometry, Opt. Express 29(23), 37189 (2021); DOI:

  8. S. Candussio, S. Bernreuter, T. Rockinger, K. Watanabe, T.Taniguchi, J. Eroms, I.A. Dmitriev, D. Weiss, and S.D. Ganichev, THz radiation induced circular Hall effect in graphene, Phys. Rev. B (2022), arXiv:submit/4146638 [cond-mat.mes-hall] 

  9. M. Otteneder, M. Hild, Z. D. Kvon, E. E. Rodyakina, M. M. Glazov, S. D. Ganichev, Highly superlinear giant terahertz photoconductance in GaAs quantum point contacts in the deep tunneling regime​, Phys. Rev. B 104, 205304 (2021).DOI:

  10. S.V. Morozov, V.V. Rumyantsev, M.S. Zholudev, A A. Dubinov, V. Ya. Aleshkin, V. V. Utochkin, M. A. Fadeev, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, V. I. Gavrilenko, and F Teppe.  Coherent Emission in the Vicinity of 10 THz due to Auger-Suppressed Recombination of Dirac Fermions in HgCdTe Quantum Wells -  ACS Photonics 8 (12), 3526-3535 (2021) -

  11. S.S. Krishtopenko, A.M. Kadykov, S. Gebert, S. Ruffenach, C. Consejo, J. Torres, C. Avogadri, B. Jouault, W. Knap, N.N. Mikhailov, S.A. Dvoretskii, and F. Teppe Many-particle effects in optical transitions from zero-mode Landau levels in HgTe quantum wells,  - Physical. Review. B 102 (4), 041404 (2020) -

  12. S. Mantion, C. Avogadri, S.S. Krishtopenko, S. Gebert, S. Ruffenach, C. Consejo, S.V. Morozov, N.N. Mikhailov, S.A. Dvoretskii, W. Knap, S. Nanot, F. Teppe, B. Jouault, Quantum Hall states in inverted HgTe quantum wells probed by transconductance fluctuations, -  Physical Review B 102 (7), 075302 (2020);  -

  13. M. Khan, K. Indykiewicz, P. L. Tam, and A. Yurgens, High Mobility Graphene on EVA/PET​, Nanomaterials 12, 331 (2022);

 Fig. An example of the device with the completely symmetric ac-current injection favoring only thermoelectric readout mechanism (G. Skoblin, et al., APL 112, 063501 (2018))

Page manager Published: Tue 12 Apr 2022.