Lectures and videos

Kenneth Brown, Georgia Tech (ion/atom traps)

The presentation: Ion Trap Quantum Computers

- pdf (9 Mb)
- video part 1, YouTube
- video part 2, YouTube

For more about Prof. Brown's work and group members , see: http://www.chemistry.gatech.edu/faculty/brown/​

Background references: 

  • Large scale modular quantum computer architecture with atomic memory and photonic interconnects
    C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim
    Phys. Rev. A 89, 022317 (2014)
  • Architecture for a large-scale ion-trap quantum computer
    D. Kielpinski, C. Monroe, and D.J. Wineland
    Nature 417, 709  (2002)
  • Quantum computing with trapped ions
    H. Haeffner, C.F. Roos, and R. Blatt
    Phys. Rep. 469, 155-203 (2008) 
Leo DiCarlo, TU Delft (circuit QED, exp)

The presentation: Quantum computing with circuit QED

- pdf (9Mb)



Background references:

  • Detecting bit-flip errors in a logical qubit using stabilizer measurements
    D. Ristè, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen, O.-P. Saira, and L. DiCarlo
    Nature Communications 6, 6983 (2015). 
  • Digital quantum Rabi and Dicke models in superconducting circuits
    A. Mezzacapo, U. Las Heras, J. S. Pedernales, L. DiCarlo, E. Solano, and L. Lamata
    Scientific Reports 4, 7182 (2014)
  • Reversing quantum trajectories with analog feedback
    G. de Lange, D. Ristè, M. J. Tiggelman, C. Eichler, L. Tornberg, G. Johansson, A. Wallraff, R. N. Schouten, and L. DiCarlo
    Physical Review Letters, 112, 080501 (2014)
  • Deterministic entanglement of superconducting qubits by parity measurement and feedback
    D. Ristè, M. Dukalski, C.A. Watson, G. de Lange, M.J. Tiggelman, Ya.M. Blanter, K.W. Lehnert, R.N. Schouten, and L. DiCarlo
    Nature 502, 350 (2013).
Steve Girvin, Yale Quantum Institute (Introduction to circuit QED)

The presentation:

- pdf (2Mb), Quantum Electrical Circuits
powerpoint (10Mb), Introduction to Circuit QED: part II 
video part 1, YouTube
video part 2, YouTube



  • Circuit QED: Superconducting Qubits Coupled to Microwave Photons, (pdf)
    in Proceedings of the 2011 Les Houches Summer School on Quantum Machines, eds. M.H. Devoret, R.J. Schoelkopf and Benjamin Huard (Oxford University Press, 2014).
  • Wiring up quantum systems
    R.J. Schoelkopf and S.M. Girvin
    Invited ‘Horizons’ Review, Nature 451, 664 (2008).
  • Superconducting Circuits for Quantum Information: An Outlook,
    M.H. Devoret and R.J. Schoelkopf
    Science 339, 1169-1174 (2013).
  • ‘Basic Concepts in Quantum Information,’S. M. Girvin, in `Strong Light-Matter Coupling: From Atoms to Solid-State Systems,’
    Ed. by Alexia Auffeves, Dario Gerace, Maxime Richard, Stefano Portolan, Marcelo Franca Santos, Leong Chuan Kwek, Christian Miniatura,
    (pp. 155-206, World Scientific, Singapore, 2014)

Research papers:

  • ‘Black-box superconducting circuit quantization,’
    Simon E. Nigg, Hanhee Paik, Brian Vlastakis, Gerhard Kirchmair, Shyam Shankar, Luigi Frunzio, Michel Devoret, Robert Schoelkopf and  S.M.  Girvin,
    Phys. Rev. Lett. 108, 240502 (2012).
  • ‘Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits,’
    M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin and R. J. Schoelkopf,
    Nature 482, 382-385 (2012).
  • ‘Stabilizer quantum error correction toolbox for superconducting qubits,’
    Simon E. Nigg and S. M. Girvin, Phys.
    Rev. Lett. 110, 243604 (2013).
  • ‘Observation of quantum state collapse and revival due to the single-photon Kerr effect,’
    Gerhard Kirchmair, Brian Vlastakis, Zaki Leghtas, Simon E. Nigg, Hanhee Paik, Eran Ginossar, MazyarMirrahimi, Luigi Frunzio, S. M. Girvin, and R. J. Schoelkopf,
    Nature 495, 205-209 (2013).
  • ‘Deterministically encoding quantum information in 100-photon schrodinger cat states,’
    Vlastakis, B., Kirchmair, G., Leghtas, Z., Nigg, S., Frunzio, L., S.M., Girvin, Mirrahimi, M., and Schoelkopf, R.J.
    Science 342, 607 (2013).
  • Quantum Back-Action of Variable-Strength Measurement,
    M. Hatridge and S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K.M. Sliwa, B. Abdo, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, M.H. Devoret,
    Science 339, 178 (2013).
  • ‘Cavity-assisted quantum bath engineering,’
    K. W. Murch, U. Vool, D. Zhou, S. J. Weber, S. M. Girvin, I. Siddiqi,
    Phys. Rev. Lett. 109, 183602 (2012).
  • Autonomously stabilized entanglement between two superconducting quantum bits,
    S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, M. H. Devoret,
    Nature 504, 419 (2013).

Background presentation:

Elham Kashefi, Edinburgh (Verification of QC, complexity)

The presentation: Verification of Quantum Computing

- pdf (13Mb)
video part 1, YouTube
video part 2, YouTube


Background references:

  • Experimental verification of quantum computations
    S. Barz, J. Fitzsimons, E. Kashefi and P. Walther
    Nature Physics 9, 727 (2013)
  • Blind Quantum Computing with weak coherent pulses
    V. Dunjko, E. Kashefi and A, Leverrier
    Phys. Rev. Lett. 108, 200502 (2012)
  • Demonstration of Blind Quantum Computing
    S. Barz, E. Kashefi, A. Broadbent, J. Fitzsimons, A. Zeilinger, P. Walther
    Science 335, 303 (2012).
Dalziel Wilson, EPFL (Optomechanics)

 The presentation: Chalmers Optomechanics

- powerpoint (45Mb)
- video part 1, YouTube
- video part 2, YouTube

Seth Lloyd, MIT (Quantum machine learning)
The presentation:

- video part 1, YouTube
video part 2, YouTube 



Background references:

  • Quantum Algorithm for Linear Systems of Equations
    A. W. Harrow, A. Hassidim, and S. Lloyd
    Phys. Rev. Lett. 103, 150502 (2009)
  • Quantum principal component analysis
    S. Lloyd, M. Mohseni, P. Rebentrost
    Nature Phys. 10, 631 (2014).
  • Quantum algorithms for supervised and unsupervised machine learning
    S. Lloyd, M. Mohseni, and Patrick Rebentrost
  • Quantum support vector machine for big feature and big data classification
    P. Rebentrost, M. Mohseni, and S. Lloyd
    Phys. Rev. Lett. 113, 130503 (2014).
  • Quantum Deep Learning
    N. Wiebe, A. Kapoor, K.M. Svore
    arXiv: 1412.3489. 
  • Read the fine print
    S. Aaronson
    Nature Phys. 11, 291 (2015)


Background presentation: www.youtube.com/watch?v=wkBPp9UovVU


Peter Love, Haverford College, USA (digital simulation, chemistry)

The presentation:

- pdf (13Mb), Basic Techniques of Digital Quantum Simulation
- pdf (16Mb), Interacting Fermions and Quantum Chemistry
- video part 1, YouTube
- video part 2, YouTube

Background references:

  • Simulated quantum computation of molecular energies
    A. Aspuru-Guzik, A.D. Dutoi, P.J. Love, and M. Head-Gordon
    Science 309, 1704 (2006)
  • Adiabatic Quantum Simulation of Quantum Chemistry
    R. Babbush, P. J. Love and Alan Aspuru-Guzik
    Scientific Reports 4: 6603 (2014)
  • Quantum algorithms for the simulation of chemical dynamics
    Ivan Kassal, Stephen P. Jordan, Peter J. Love, Masoud Mohseni, Alan Aspuru-Guzik
    PNAS 105, 18681 (2008)
  • The Bravyi-Kitaev transformation for quantum computation of electronic structure
    Jacob T. Seeley, Martin J. Richard, Peter J. Love
    J. Chem. Phys. 137, 224109 (2012); arXiv: 1208.5986
  • Back to the Future: A roadmap for quantum simulation from vintage quantum chemistry
    Peter J. Love
    Advances in Chemical Physics 154, 39 (2014); arXiv:1208.5524
  • Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation
    R. Babbush, J. McClean, D. Wecker, A. Aspuru-Guzik and N. Wiebe
    Phys. Rev. A 91, 022311 (2015)
  • A variational eigenvalue solver on a photonic quantum processor
    A. Peruzzo , J. McClean, P. Shadbolt, M-H Yung, X-Q Zhou, P.J. Love, A. Aspuru-Guzik, and J.L. O’Brien
    Nat. Comm. B, 4213 (2014).
Hartmut Neven, Google (Machine learning with quantum annealing)
The presentation: Quantum Machine Learning

- pdf (12Mb)
- video part 1, YouTube
- video part 2, YouTube


  • Computational Role of Multiqubit Tunneling in a Quantum Annealer
    Sergio Boixo, Vadim N. Smelyanskiy, Alireza Shabani, Sergei V. Isakov, Mark Dykman, Vasil S. Denchev, Mohammad Amin, Anatoly Smirnov, Masoud Mohseni, Hartmut Neven
  • Construction of Non-Convex Polynomial Loss Functions for Training a Binary Classifier with Quantum Annealing
    Ryan Babbush, Vasil Denchev, Nan Ding, Sergei Isakov, Hartmut Neven
  • Totally Corrective Boosting with Cardinality Penalization
    Vasil S. Denchev, Nan Ding, Shin Matsushima, S.V.N. Vishwanathan, Hartmut Neven
  • Robust Classification with Adiabatic Quantum Optimization
    Vasil S. Denchev, Nan Ding, S. V. N. Vishwanathan, Hartmut Neven
  • Training a Large Scale Classifier with the Quantum Adiabatic Algorithm
    Hartmut Neven, Vasil S. Denchev, Geordie Rose, William G. Macready
  • Probabilistic Label Relation Graphs with Ising Models
    Nan Ding, Jia Deng, Kevin Murphy, Hartmut Neven
  • ArXiv:1503.01428

Other authors:

  • Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
    Vadim N. Smelyanskiy, Udo v. Toussaint, Dogan A. Timucin
  • Quantum search algorithms
    Andris Ambainis

    A good book on machine learning to have handy is:
    Pattern Recognition and Machine Learning, Christopher Bishop, Springer 2007
Klaus Sengstock, Uni Hamburg (spins, simulation)

Background references:

  • Engineering Ising-XY spin models in a triangular lattice using tunable artificial gauge fields
    J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M. Lewenstein, L. Mathey
    Nature Physics 9, 738 (2013)
  • Engineering spin-waves in a high-spin ultracold Fermi gas
    J. Heinze, J. S. Krauser, N. Fläschner, U. Ebling, A. Eckardt, M. Lewenstein, K. Sengstock, C. Becker
    Phys. Rev. Lett. 110, 250402 (2013) 
  • Non-Abelian gauge fields and topological insulators in shaken optical lattices
    P. Hauke, O. Tielemann, A. Celi, C. Ölschläger, J. Simonet, J. Struck, M. Weinberg, P. Windpassinger, K. Sengstock, M. Lewenstein, A. Eckardt
    Phys. Rev. Lett. 109, 145301 (2012)
Barbara Terhal, Aachen (Error correction, Surface code)
The presentation: Quantum Error Correction

- pdf (2 Mb)
- video part 1, YouTube
- video part 2, YouTube


Background references:

  • Quantum error correction for quantum memories
    B. M. Terhal
    Rev. Mod. Phys. 87, 307 (2015) 
  • Surface Codes: towards practical large-scale quantum computation
    A. Fowler, M. Mariantoni, J. Martinis and A. Cleland
    Phys. Rev. A 86, 032324 (2012)
  • Topological Quantum Memory
    E. Dennis, A. Kitaev, A. Landahl, J. Preskill
    J. Math. Phys. 43, 4452-4505 (2002) 
  • Fault-tolerant Architectures for Superconducting Qubits
    D.P. DiVincenzo
    Phys. Scr
    . T137, 014020 (2009)


Topics/questions for discussion:

Surface Code Architecture
* Encoding
* Noise Threshold
* Logic

We will have a discussion on the feasibility of this architecture for superconducting qubits at the end.

Matthias Troyer, ETH Zurich (optimization, quantum annealing)

The presentation:

- pdf (2Mb), High Performatnce Quantum Computing
- pdf (6Mb), Quantum annealing
- video part 1, YouTube
- video part 2, YouTube  

Background references:

  • Improving Quantum Algorithms for Quantum Chemistry
    M. B. Hastings, D. Wecker, B. Bauer, and M. Troyer
    Quant. Inf. Comput 15, 1 (2015).
  • Reexamining classical and quantum models for the D-Wave One processor
    T. Albash, T. Rønnow, M. Troyer, D. Lidar
    Bull. Am. Phys. Soc. 60(1), Q38.00009 (2015). 
  • Optimising simulated quantum annealing, simulated annealing and a mean-field algorithm to find ground states of Ising spin glasses
    D. S. Steiger , T. F. Rønnow , M. Troyer
    Bull. Am. Phys. Soc. 60(1), Q38.00014 (2015).
Andrew White, UQ, Brisbane (photonics)

The presentation: Photonic Quantum Information

- pdf, part 1 (7 MB)
pdf, part 2 (24Mb)
video part 1, YouTube
video part 2, YouTube
video part 3, YouTube


Background references:

  • Characterizing quantum dynamics with initial system-environment correlations
    M. Ringbauer, C. J. Wood, K. Modi, A. Gilchrist, A. G. White, and A. Fedrizzi
    hysical Review Letters 114, 090402 (2015).hysical Review Letters 114, 090402 (2015).
  • Measurements on the reality of the wavefunction
    M. Ringbauer, B. Duffus, C. Branciard, E. G. Cavalcanti, A. G. White, and A. Fedrizzi
    Nature Physics 11, 249 (2015).
  • Enhancing quantum transport in a photonic network using controllable decoherence
    D. N. Biggerstaff, R. Heilmann, A. A. Zecevik, M. Gräfe, M. A. Broome, A. Fedrizzi, S. Nolte, A. Szameit, A. G. White, and I. Kassal
    arXiv 1504.06152 (2015).
Joerg Wrachtrup, Stuttgart (NV centers)

The presentation: Spin defects

- pdf (12Mb)
video part 1, YouTube
video part 2, YouTube


Background references:

  • Quantum register based on coupled electron spins in a room-temperature solid
    Neumann P, Kolesov R, Naydenov B, et.al.
    Nature Phys. 6, 249 (2010)
  • Defect center room-temperature quantum processors
    Wrachtrup J.
    PNAS 107, 9479 (2010).
  • Single-Shot Readout of a Single Nuclear Spin
    Neumann, P.,Beck, J., Steiner, M., Rempp, F., Fedder, H., Hemmer, P.R., Wrachtrup, J., Jelezko, F.
    Science 329, 542 (2010).
  • Strong Coupling of a Spin Ensemble to a Superconducting Resonator
    Kubo, Y; Ong, FR; Bertet, P, et al.
    Phys. Rev. Lett. 105, 140502 (2010).
  • Coherent control of single spins in silicon carbide at room temperature
    M. Widmann, S.-Y. Lee, T. Rendler, et al.
    Nature Materials 14, 164 (2015)
  • High-fidelity spin entanglement using optimal control
    Dolde, Florian; Bergholm, Ville; Wang, Ya; et al.
    Nature Commun. 5: 3371 (2014).
  • Quantum error correction in a solid-state hybrid spin register
    G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbrüggen, H. Abe, T. Ohshima, J. Isoya, J. F. Du, P. Neumann & J. Wrachtrup
    Nature 506, 204 (2014).
  • High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond
    Hall, L. T.; Beart, G. C. G.; Thomas, E. A.; et al.
    Scientific Reports 2: 401 (2012).
Anton Zeilinger, Vienna (Fundamentals of quantum information) 
The presentation:
video, YouTube

For more about Prof. Zeilingers work and group members, see: https://www.iqoqi-vienna.at/research/zeilinger-group/

Background references:

  • The Oxford Questions on the foundations of quantum physics
    A. Zeilinger, J. N. Butterfield, G. A. D. Briggs
    Proc. R. Soc. A 469, 299 (2013) 
  • Quantum Imaging with Undetected Photons
    G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, A. Zeilinger
    Nature 512, 409 (2014).
  • Eugene Wigner - A Gedanken Pioneer of the Second Quantum Revolution
    A. Zeilinger
    EPJ Web of Conferences, Vol. 78, 01010 (2014) 
  • Bell-inequality violation with entangled photons, free of the coincidence-time loophole
    J-A. Larsson, M. Giustina, J. Kofler, B. Wittmann, R. Ursin, S. Ramelow
    Phys. Rev. A 90, 032107 (2014). 
  • Bell violation with entangled photons, free of the fair-sampling assumption
    Marissa Giustina, Alexandra Mech, Sven Ramelow, Bernhard Wittmann, Johannes Kofler, Jörn Beyer, Adriana Lita, Brice Calkins, Thomas Gerrits, Sae Woo Nam, Rupert Ursin, Anton Zeilinger
    Nature 497, 227-230 (May 2013); http://arxiv.org/abs/1212.0533
  • Quantum Information and Randomness
    Johannes Kofler, Anton Zeilinger
    European Review, volume 18, issue 04, pp 469-480, Cambridge University Press (2010)

Published: Mon 18 May 2015. Modified: Thu 27 Jun 2019