News: Bioteknik related to Chalmers University of TechnologyMon, 26 Jun 2017 09:04:25 +0200 cell factories for the drugs of the future<p><b>​Pharmaceuticals based on proteins are promising candidates for the treatment of cancer and other severe diseases, but they can be hard to produce. In a new research project, Chalmers researchers will develop new genetically modified cells, so-called cell factories, which can produce the desired proteins.</b></p>​The market for pharmaceutical drugs based on human proteins, so called protein drugs, is continuously increasing.<br /><br />&quot;Protein drugs give a more targeted effect and less side effects than traditional drugs based on small molecules,&quot; explains Jens Nielsen, Professor of Systems Biology at Chalmers.<br /><br />The hope is that one will be able to treat a very wide range of diseases, for example different types of cancer, diabetes or multiple sclerosis. The proteins are produced by the so-called cell factories – cells that are genetically modified to produce and secrete the desired protein. The problem is that it is difficult at present to produce some of these proteins.<br /><br />&quot;Some proteins are straightforward to produce, but with others it does not work at all. And we do not really know why,&quot; says Jens Nielsen.<br /><br />Now, the Chalmers research groups of Jens Nielsen and Associate Professor Dina Petranovic, with researchers at KTH, have received a grant of SEK 34 million from the Foundation for Strategic Research to investigate protein production by a human cell line and by yeast cell factories, which the group has very much experience with.<br /><br />&quot;We want to understand why it doesn’t’ work sometimes, so that we can learn to modify the cell factories to produce more different types of protein,&quot; says Jens Nielsen.<br /><br />Cell factories based on human cell lines are not yet commercially available. Today, most of pharmaceutical proteins are produced primarily by hamster cell lines. Pharmaceutical proteins produced in non-human cell lines can be identical to human proteins, or have very small differences which in some patients, the difference may give rise to a response from the immune system.<br /><br />&quot;With cell factories based on human cells, we aim to get completely identical proteins which would not induce such reactions,&quot; says Jens Nielsen.<br /><br />The long-term vision is to be able to produce all the desired proteins with cell factories, so that the needed protein pharmaceuticals come more quickly onto the market.<br /><br />Read more:<br /><a href="/sv/institutioner/bio/nyheter/Sidor/Proteinforskning-Jens.aspx">Pharmaceutical products based on human proteins </a>(in Swedish)<br /><br />Text: Ingela Roos<br />Photo: Johan BodellThu, 22 Jun 2017 17:00:00 +0200 new in chemical society<p><b>​Eva Albers, reseacher at the Department of Biology and Biological Engineering, have been elected a new member in The Swedish Chemical Society. She hopes to contribute with her broad competence in an environment filled with chemistry enthusiasts.</b></p><img class="chalmersPosition-FloatRight" src="/SiteCollectionImages/Institutioner/Bio/IndBio/Eva_Albers17_220.jpg" alt="" style="height:278px;width:200px;margin:5px" /><strong>​Hello Eva Albers, what do you have to do to be nominated to The Swedish Chemical Society’s committee of nomenclature?</strong><br />– I was contacted by a person from the election committee, working here at Chalmers, who thought that I have a suitable complementary competence.<br /><br /><strong>What do the committee do – what will be your task?</strong><br />– Nomenclature is the terms and denominations used in a certain field, like chemistry. The committee of nomenclature translates new words to Swedish, ensures a good dialogue regarding important language topics and answer questions about nomenclature in the field of chemistry. I will contribute with my competence in biochemistry.<br /><br /><strong>How does it feel to be a new member?</strong><br />– This will be fun, I’m looking forward to be part of the society and to gain new contacts in the “Chemistry sphere” of Sweden.<br /><br /><strong>What will be your contribution?</strong><br />– I have a broad competence within biochemistry and biotechnology, which I hope will be of use in the committee of nomenclature.<br /><br />Note: Read more about the <a href="">chemical society on their web page </a>(in Swedish).<br /><br /><br />Text: Mia Malmstedt<br />Photo: Annika Söderpalm, Vera kommunikationWed, 31 May 2017 11:00:00 +0200 microorganisms for sustainable production<p><b>More robust microorganisms can play an important role in future production of fuels and chemicals. But changing nature’s design can be problematic. Lina Lindahl will soon defend her thesis in this research field.</b></p>​Our society is in great need of greener, alternative ways to produce fuels, materials and chemicals. One way of doing this is to replace fossil raw materials with biomass from forest and agriculture. Microorganisms can then be used to produce the desired compounds from the biomass.<br /><br />But this environmentally friendly production needs to be made more efficient. Therefore, researchers are now trying to developing more robust microorganisms that can retain a high productivity also under unfavorable conditions.<br /><br />Lina Lindahl has attempted to change the protective coat of the microorganisms, its cell membrane, to make it more resilient.<br />– I have investigated how the lipid composition in membranes can be changed to reduce the diffusion of acetic acid, which is one of several substances that prevent efficient production, she says.<br /><br />In her research, Lina Lindahl, has compared the lipid composition of the yeast <em>Saccharomyces cerevisiae</em>, which has already proved useful for industrial production, with another yeast with the capability to handle acetic acid significantly better.<br />– By comparing the two yeasts, I could identify a group of lipids called sphingolipids, and then show that their presence decreases the acetic acid diffusion rate across the cell membrane.<br /><br />Next, she tried to increase <em>Saccharomyces cerevisiae</em>’s production of sphingolipids using genetic engineering, thus increasing the yeast’s resistance to acetic acid. But this turned out to be difficult.<br />– Lipid production in yeast is very strictly regulated. Attempts at the genome level were not enough – but it should be possible, Lina Lindahl says.<br />– Changing the lipid composition of the cell membrane to create more robust microorganisms is a new research field, with few successful experiments. We did not really know how difficult it would be to get results, but we realized that solutions evolved in nature creations is not always easy to imitate. My dissertation presents methodology and new thinking in this research field.<br /><br />On June 2, Lina Lindahl defends her thesis entitled “Towards membrane engineering as a tool in cell factory design: A case study on acetic acid tolerance in <em>Saccharomyces cerevisiae</em>”.<br />– It's great to do research, and it would be nice to stay at Chalmers. But it’s also tough with long experiments in the lab, especially if you have a family. I do not know where I will continue my career – I keep my options open!<br /><br /><br />Text: Mia Malmstedt<br />Photo: Martina Butorac<br />Tue, 30 May 2017 16:00:00 +0200 our researchers!<p><b>​Proteins, algae and cell factories. The topics varies when researchers from the Department of Biology and Biological Engineering meet the public at the Science Festival. Professor Pernilla Wittung-Stafshede is one of many speakers, and she will also participate in the Science Slam competition.</b></p>​Hundreds of activities, over 1000 hours of science and more than 70,000 visits. This is the International Science Festival, with the aim to communicate science in an easy way, towards the public, schools and business sector. This year the festival will take place on May 8-19.<br /><br /><img class="chalmersPosition-FloatRight" src="/SiteCollectionImages/Institutioner/Bio/ChemBio/PernillaWittung-Stafshede_professor_02_250.jpg" alt="" style="margin:5px" />Pernilla Wittung-Stafshede, Professor and Head of the Chemical Biology division, will make two appearances. One is a lunch lecture, the second is at the Science Slam competition, where researchers from the University of Gothenburg and Chalmers challenge each other to explain their research in three minutes. Last year, the winner was Biology and Biological Engineering researcher Cecilia Mayer with her research on beans.<br /><br /><strong>Pernilla Wittung-Stafshede, what’s your talk about?</strong><br />– I will talk about proteins. How they work and how important they are to all living organisms, but also about the fact that they can make us sick. If the proteins misfold, they can cause neurodegenerative diseases such as Alzheimer’s. I will focus on diseases caused by misfolding, and the fact that we see a dramatic increase worldwide right not – mainly because the population is growing older – and we have no cure for these diseases today.<br /><br /><strong>What’s it like to talk about this in such a short time – is it even possible to describe your research so briefly?</strong><br />– Yes, it’s possible and I’m a fast talker! But I will try to slow down to make people understand.<br /><br /><strong>And what about the fact that this is a competition – how does that feel?</strong><br />– Exciting and scary, and new to me. But I see the competition as a fun part of this, nothing too serious.<br /><br /><strong>What are your chances?</strong><br />– I don’t know anything about the researchers from the University of Gothenburg, but I do know that the participants from Chalmers are good people with very interesting research. So it will be a tight race!<br /><br /><strong>Why is Science Slam a good idea?</strong><br />– It’s a good way to convey what Chalmers researchers are doing. It’s important to show the breadth of Chalmers – and the fact that we are doing many kinds of research of importance for the future!<br /><br /><strong>Meet the researchers at the Department of Biology and Biological Engineering during the Science Festival:</strong><br /><br />Wednesday, May 10:<br />Theme: Refining in Sweden – Factories for a green future <br />Bältespännarparken, Lilla festivaltältet, 16.00-17.30<br /><br />Several researchers from Chalmers will give short talks under this theme. Note that all the talks are in English!<br />Lisbeth Olsson: The Bio-refinery concept, 16.00-16-15 <br />Jenny Arnling Bååth: Enzymes &amp; biorefineries, 16.15-16.30<br />Cecilia Geijer: Microorganisms: small efficient cell factories, 16.30-16.45<br />Emma Karlsson: Nylon from the forest – how can that be? 16.45-17.00<br />Ingrid Undeland: Algae – green slime to future food? 17.00-17.15<br />Matty Janssen: Does cutting trees for plastics help the planet? 17.15-17.30<br />Conferencier: Carl-Johan Franzén<br /><br />Friday, May 12:<br />Science Slam competition with Pernilla Wittung-Stafshede (and other Chalmers researchers)<br />Bältesspännarparken, 18.00-19.00<br /><br />Saturday, May 13:<br />Pernilla Wittung-Stafshede: Proteinveckning – en fråga om liv och död (in Swedish)<br />Chalmersska huset, Södra Hamngatan 11, 12.00-13.00<br /><br />Sunday, May 14:<br />Cecilia Mayer: Bönorna regerar! (in Swedish)<br />Chalmersska huset, Södra Hamngatan 11, 12.00-13.00<br /><br /><br />Text: Mia Malmstedt<br />Photo of Pernilla Wittung-Stafshede: Johan Bodell<br />Mon, 08 May 2017 12:00:00 +0200 for thesis on Type 2 diabetes<p><b>Leif Väremo’s thesis entitled Systems Biology of Type 2 Diabetes in Skeletal Muscle was awarded the prize for this year’s best pre-clinical thesis by the society Svensk diabetologisk förening. &quot;A big and happy surprise&quot;, he says.</b></p><p>​On April 27th, the prize for thesis of the year was awarded by SDF, Svensk diabetologisk förening, at a banquet at Diabetesforum. The award went to Leif Väremo.<br />– I was really surprised, I do not even know how they found me, Leif Väremo said as he received the news.<br />– The price money is 20,000 SEK and are to be used to study something which will add value to the health care system... Maybe I can go to a conference?<br /><br />His thesis focuses mainly on the use of systems biology tools to investigate which genes are expressed – that is, which genes are active or inactive – at a particular time, thereby being able to draw some conclusions on what is happening inside the cell.<br />– Each cell has its DNA, with its genes. Under a given condition, for example a disease, some genes are expressed. Proteins are then formed which, in turn, have specific tasks within the cell, Leif Väremo explains.<br />– If we measure the expression of all 20,000 genes, how are we to translate this information into something we can understand? We need the system biology analysis tools for this. If we can see what changes at the gene level, we might understand what this means for the function of the cell.<br /><br />Studies of gene expressions can be useful in research on various diseases. Leif Väremo chose to look at Type 2 diabetes, which is linked to the function of muscle cells. After a meal, for example, insulin gives signals to reduce sugar in our blood, and the majority of this sugar is absorbed by muscle cells. However, when an individual is suffering from Type 2 diabetes, the muscle cells develop insulin resistance. The muscle tissue no longer absorb sugar, and this leads to an excess of sugar in the blood.<br /></p> <p>Väremo's thesis also includes a closer look at the metabolism of muscle cells:<br />– We constructed a network model of muscle cell metabolism, where we map all the chemical reactions of the cell. Each step, each reaction, needs an enzyme to be catalyzed - and this enzyme is a protein that, in turn, comes from a gene. The network explains the metabolism, and if we then connect it to the gene data, we may use our network to interpret gene expression data.<br /></p> <p>With his qualified hypotheses, Leif Väremo wants to pave the way for future studies, which in the long term can lead to the discovery of new biomarkers and design of effective drugs.<br />– Our methods and a variety of new studies could lead to a greater understanding and more hypotheses about the factors behind Type 2 diabetes, he concludes.<br /><br /><br />Text: Mia Malmstedt<br />Photo: Fredrik Boulund<br /></p>Fri, 28 Apr 2017 11:00:00 +0200 a source for future antibiotics<p><b>​Fungi is a potential goldmine for the production of pharmaceuticals. This is shown by Chalmers researchers, who have developed a method for finding new antibiotics from nature’s own resources. The findings could prove very useful in the battle against antibiotic resistance.</b></p>​Antibiotics have saved millions of lives since they were discovered in the 1940s. But recently we’ve had to learn a new term; antibiotic resistance. More and more bacteria are developing their own protection against antibiotics, thereby becoming resistant to treatment. This will lead to simple infections getting lethal once again, and our need for new antibiotics is urgent.<br /><br />The first antibiotic being mass-produced was penicillin, derived from the Penicillium fungi. Looking for new antibiotics, Chalmers researchers sequenced the genomes of nine different types of Penicillium species. And the findings are amazing:<br /><br />– We found that the fungi has an enormous, previously untapped, potential for production of new antibiotics and other bio-active compounds, such as cancer medicines, says Jens Christian Nielsen, a PhD student at the Department of Biology and Biological Engineering.<br /><br />In the study, recently published in the journal Nature Microbiology, the research group scanned the genomes of 24 different kinds of fungi to find genes responsible for the production of different bio-active compounds, like antibiotics. More than 1000 pathways were discovered, showing an immense potential for fungi to produce a large variety of natural and bio-active chemicals that could be used as pharmaceuticals.<br /><br />In about 90 cases, the researchers were able to predict the chemical products of the pathways. As an evidence of this, they followed production of the antibiotic yanuthone, and identified a new version of the drug produced by species not previously known to produce it.<br /><br />All in all, the study show a vast potential for fungi, not only in producing new antibiotics but also in enabling a more efficient production of old ones – and maybe also more effective versions of the older ones.<br /><br />– It’s important to find new antibiotics in order to give physicians a broad palette of antibiotics, old as well as new, to use in treatment. This will make it harder for bacteria to develop resistance, Jens Christian Nielsen explains.<br />– Previous efforts on finding new antibiotics have mainly focused on bacteria. Fungi have been hard to study – we know very little of what they can do – but we do know that they develop bioactive substances naturally, as a way to protect themselves and survive in a competitive environment. This made it logical to apply our tools in research on fungi.<br /><br />Researchers now have different paths to follow. One way of moving forward would be to further look at production of the new yanuthone compound. The Chalmers researchers have also constructed a map making it possible to compare hundreds of genes in the continuous evaluation of bioactive products with potent drugs in sight.<br /><br />How long it would take to get new antibiotics on the market is impossible to say.<br /><br />– The governments need to act. The pharmaceutical industry don’t want to spend money on new antibiotics, it’s not lucrative. This is why our leaders have to step in and, for instance, support clinical studies. Their support would make it easier to reach the market, especially for smaller companies. This could fuel production, Jens Christian Nielsen says.<br /><br />Read the <a href="" target="_blank">full article here<span></span><span style="display:inline-block"></span></a>.<br /><br /><br />Text: Mia Malmstedt<br />Photo: Martina Butorac<br />Wed, 05 Apr 2017 14:00:00 +0200 elected member of IVA<p><b>​Lisbeth Olsson, Professor at the division of Industrial Biotechnology, have been elected a new member in IVA. “Great to become part of a for me new and exciting environment”, she comments.</b></p>​IVA, The Royal Academy of Engineering Sciences, released the news on Wednesday: eight new members was elected. One of them is Lisbeth Olsson, Head of division and Professor at the Department of Biology and Biological Engineering.<br />– IVA consists of representatives from both academia and industry, it’s an excellent platform for networking. Important societal challenges are addressed, and this means an opportunity for me to be even more active in the development in society, to influence change and also understand how to make an impact, she says.<br /><br />IVA has 1300 members, of which 1000 are Swedes, and they are divided into 12 divisions. The divisions monitor, analyse and impact important issues within their field by, for example, organizing seminars. The members also work on referral responses to the Government, and are active in Programme Council and projects. The current projects include, for instance, Innovation in the Forest Industry, Electricity Crossroads, Good Cities of the Future, and Aspects of Energy.<br /><br />Lisbeth Olsson have, following a nomination, been elected into the division of Chemical Engineering.<br />– I don’t know exactly how the work and engagement in IVA take place. But since my work is interdisciplinary, and I work with both academia and industry, I believe I can contribute in bridging between parties, she says.<br />– I care deeply about bioeconomics, and I see that different parts of the industry need to come together to address different aspects of our issues. Perhaps I can contribute with knowledge and facilitate meetings.<br /><br />Read more about IVA on the <a href="">academy’s web page</a><br /><br />Text: Mia Malmstedt<br />Photo: Martina Butorac<br />Thu, 02 Mar 2017 15:00:00 +0100 break-through: Producing gasoline in yeast cell factories<p><b>​There have been many attempts to modify this stubborn little enzyme. But none have succeeded, until now. With new findings from Chalmers the enzyme FAS has started to produce sustainable chemicals for biofuels.</b></p>​We are in great need of sustainable and clean alternatives to oil-derived products. One of the choices at hand is to produce chemicals and biofuels from sustainable biomass.<br /><br />To do this, researchers in the group of Professor Jens Nielsen at the Department of Biology and Biological Engineering is hard at work trying to design yeast cell factories that can actually produce the chemicals we need in a sustainable way. The group now had a major break-through, as they developed a novel method of changing the enzyme FAS, fatty acid synthase, into producing new products.<br />– This enzyme normally synthesizes long chain fatty acids, but we have now modified it into synthesizing medium chain fatty acids and methyl ketones – chemicals that are components in currently used transportation fuels, Post-doc Zhiwei Zhu explains.<br />– In other words: We are able to produce gasoline and jet fuel alternatives by yeast cell factories, and this has never been done before.<br /><br />The important enzyme was first elucidated by Nobel Prize winner Feodor Lynen, and many researchers have in recent years tried to modify it. But it seemed very hard, or close to impossible – until now.<br />– We did not expect this. Actually, it was thought by the scientific community that this rigid enzyme was not readily amenable to manipulation, says Zhiwei Zhu.<br /><br />The findings are in fact a result of a lucky break. A few years ago, the researchers occasionally found a FAS which had two acyl carrier protein domains.<br />– We first tried to change this FAS by replacing one of its acyl carrier protein domains with a foreign enzyme to render it new activities, and surprisingly it worked. Then we implemented such modification in other fungal FASs and found this approach versatile.<br /><br />The researchers are now focusing on using the modified enzyme to build yeast cell factories for production of chemicals and fuels. An invention patent has been filed, and the company Biopetrolia – a spin-off company to the Chalmers department – are closely involved, trying to further develop the technique to make it economically viable.<br /><br />But as a researcher, Zhiwei Zhu also has a long-term goal of his own:<br />– I am also interested in deeply revealing the biochemical and structural basis of this novel modification in fungal FAS.<br /><br /><br />Link to the scientific article: <a href="">Expanding the product portfolio of fungal type I fatty acid synthases</a> <br /><br />Text: Mia Malmstedt<br />In the photo: Zhiwei Zhu, Jens Nielsen and Biopetrolia CEO Anastasia Krivoruchko. Photo taken by Martina Butorac.<br />Tue, 28 Feb 2017 14:00:00 +0100 + China to solve big challenges<p><b>​Three research projects from the BIO-department got grants from VR to collaborate with China. The result will be a better understanding of how life is created, research on effective use of biomass and a possible substitute for the old antibiotics.</b></p>​The Department of Biology and Biological Engineering got three of VR’s grants for collaboration with China. This means that BIO got three out of six grants given to projects within the field of biotechnology, and Chalmers got four grants out of 12 awarded in total.<br /><br />Professor Jens Nielsen, Professor Pernilla Wittung-Stafshede and Associate Professor Dina Petranovic are the awardees at BIO.<br />– We have top level research at our department. And more important, we are open minded in working with good research groups wherever they are in the world. We want to collaborate to advance science for the benefit of the Swedish society, says Jens Nielsen.<br /><br />Jens Nielsen will work with a world leading group in Shanghai to identify novel natural products that can be used as antibiotics and anti-cancer drugs.<br />– It is one of the strongest research groups on microbial production and they want to interact with us to learn to use our systems biology tools, Jens Nielsen explains.<br />– They have a large collection of microorganisms that might possibly be used to produce bioactive drugs, such as antibiotics. These microorganisms have been genome-sequenced and we will perform data-mining using our research tools.<br /><br /><img class="chalmersPosition-FloatRight" src="/SiteCollectionImages/Institutioner/Bio/ChemBio/pws_180.jpg" alt="" style="margin:5px" />In Pernilla Wittung-Stafshede’s project, the researchers will take a closer look at DNA and proteins made of building blocks that are mirror images of nature’s own building blocks. DNA normally consists of nucleic acids of a certain shape, so called D-form, while proteins consists of amino acids with another shape, the so called L-form. D-form and L-form could be compared with a left and a right hand, mirroring each other. The research group now wants to create molecules with L-form nucleic acids and D-form amino acids.<br />– Then we want to find out how they work. Are they simply mirror images or do they get new traits? We will make the molecules in China, and then test them at Chalmers, Pernilla Wittung-Stafshede says.<br /><br />Understanding how these molecules work will give a deeper understanding about how life is created, and could in the long run also give clues on how to design new pharmaceuticals.<br /><br />Dina Petranovic’s project is about creating yeast strains that can produce cellulosomes which are multi-enzymatic structures. This means packing up several different enzymes that play different roles in degradation of biomass.<br />– If we aim to create a sustainable society that depends on renewables, instead of petroleum derivatives, we need efficient ways to use biomass. One way of using the biomass is to feed the catalysts that produce components such as chemicals – for fuels, medicines and polymers – and these catalysts use the sugars in the biomass, she explains.<br /><br />For Dina Petranovic, it doesn’t really matter where her collaborators reside:<br />– We think about people and what they do. Who is nice, smart and kind, and with whom would I like to work? Who does research that is interesting, complementary to mine, and with overlapping interests? It’s really not important where these people are.<br /><br />Text: Mia Malmstedt<br />Photo of Jens Nielsen and Dina Petranovic: Martina Butorac<br />Photo of Pernilla Wittung-Stafshede: Elin Berge<br />Tue, 21 Feb 2017 11:00:00 +0100 million SEK for research on new pharmaceuticals<p><b>​Chalmers receives 75 million SEK to encapsulate biological pharmaceuticals in nano carriers – research that aims to find new ways of treating severe diseases. Elin Esbjörner from the Department of Biology and Biological Engineering is part of the project.</b></p>​The news was released last week: The Swedish Foundation for Strategic Research, SSF, invests a minimum of 75 million SEK in an industrial research center led by Physics professor Fredrik Höök. The new center will study fundamental requirements for pharmaceuticals made from biological molecules like DNA and RNA.<br /><br />– A promising candidate for treating today’s incurable diseases is to reprogram the cells. However, since the reprogramming must take place inside the cell, the pharmaceutical must penetrate the cell membrane. Designing and encapsulating biological molecules so that they are capable of this is very challenging, says Fredrik Höök in a text from the Department of Physics (<a href="/en/departments/physics/news/Pages/75-MSEK-for-developing-target-seeking-biological-pharmaceuticals.aspx">read the text here</a>).<br /><br /><img class="chalmersPosition-FloatLeft" src="/SiteCollectionImages/Institutioner/Bio/ChemBio/Elin%20EW_200.jpg" alt="" style="margin:5px" />In the project, nano carriers that transport pharmaceuticals into the cell will be fabricated, mimicking naturally occurring processes for communication between cells in the human body. Elin Esbjörner, Associate Professor at the Department of Biology and Biological Engineering, takes part in the project and describes the term nano carrier:<br /><br />– A nano carrier is simply a very small capsule. The RNA-based pharmaceutical needs to be encapsulated, both to be absorbed and to be protected from decomposition outside the cell we want to reach. You could say that we are going to package RNA into small capsules, which will work like Trojan horses to get into the cell.<br /><br />The researchers found inspiration from nature’s own homing nano carriers, so called exosomes. Exosomes are membrane shielded droplets that send information and molecules between cells.<br /><br />– They are secreted and then absorbed by a receiving cell. We think that mimicking exosomes will be a very good idea, Elin Esbjörner says.<br /><br /><strong>What’s your part in this project?</strong><br />– My work is about uptake and trafficking of RNA-based pharmaceuticals within the cell. I will contribute knowledge on quantitative measurements and imaging of cell uptake. One of our goals is to map the mechanisms that RNA-based drugs use to get into the cells. I will also contribute by developing methods to study a process called endosomal escape. This is a necessary step that has to take place after the cell has taken up the RNA, because most of it will be entrapped by intracellular transport carriers – endosomes. During endosomal escape, the RNA finds its way out of the endosomes and into the cytoplasm where it’s therapeutically effective. Today, the endosomal escape is ineffective and this is one of the biggest challenges to RNA-based drugs. We hope to increase effectiveness in this process by understanding exactly how it works.<br /><br /><strong>How will this huge project affect you?</strong><br />– This is a lot of fun. To be given this big and prestigious grant does not only mean a new research project, it also mean that I now get to collaborate with Fredrik Höök and Marcus Wilhelmsson, Professor at the Department of Chemistry and Chemical Engineering, and the other center partners approaching biomolecular questions that we have had for years. It will also bring a big change to my workdays. My research group will grow to almost twice its size and at Chalmers we will work closely with Fredrik and Marcus. I will also continue my present research about protein folding diseases, and it actually fits nicely together with this new project – uptake is important in both. I think my projects will enrich each other. And, to have financing for such a long time means safety and a chance to work undisturbed.<br /><br />Partners in the project are AstraZeneca, Camurus, Vironova, Gothenburg Sensor Devices as well as Karolinska Institute and Gothenburg University.<br /><br />Text: Mia Malmstedt<br />Thu, 16 Feb 2017 16:00:00 +0100 vaccine safety<p><b>​When a vaccine is given, there’s always a risk of side-effects since it induces an immune response. The BIO-department is involved in the largest vaccine project ever, with the aim to develop new tools for monitoring vaccine safety.</b></p>​Vaccines are general; the same vaccine is given to everyone. But people are individuals, and some may react to the vaccine with unwanted side-effects.<br /><br />With new cutting-edge tools it might be possible to predict side-effects before they actually occur, thus giving the chance of rapid treatment. The technique could also, further down the line, give clues to make vaccine side-effects more rare and vaccines safer.<br /><br />Researchers from Chalmers Department of Biology and Biological Engineering is working together with a total of 18 partners from different academic disciplines in the EU-project BioVacSafe (Biomarkers for enhanced vaccines immunosafety). Among the partners are Imperial College London, Max Planck Institute and Gothenburg University as well as world leading pharmaceutical companies.<br /><br />The overall goal is to develop tools to speed up and improve the monitoring systems of vaccine safety, both before and after release to the market.<br />– We want to monitor patients to find side-effects before the patients have noticed them themselves, says Sakda Khoomrung, project leader at the division of Systems and Synthetic Biology.<br />– The project started in 2012 and has gone very well. There’s potential to continue as we see good results of our work.<br /><br />The Systems Biology-researchers, headed by Professor Jens Nielsen, is contributing to the BioVacSafe-project as responsible for two parts. One is to design and implement a web-based platform that will integrate different types of data, such as transcriptomics, metabolomics and clinical data. Sakda Khoomrung is working with the other part; to analyze metabolic response to the vaccines.<br /><br />Serum samples have been collected from 60 patients in total. A third, 20 patients, was given the influenza vaccine Fluad, 20 was given the Yellow fever vaccine Stamaril, and 20 was given placebo. The researchers analyzed blood taken from each patient on three occasions before the vaccine (or placebo) was administrated, and a total of eight times afterwards.<br /><br />The patients stayed in the hospital for a full week during the study, giving the researchers complete control over their food intake and activities. This is important since metabolomics shows the body’s response to both food and other habits, such as exercise, smoking or drinking. The group was then monitored for three additional weeks after going home.<br /><img width="240" height="300" src="/SiteCollectionImages/Institutioner/Bio/SysBio/sakda_240.jpg" class="chalmersPosition-FloatLeft" alt="" style="height:192px;width:150px;margin:5px" />– In our preliminary results, we found that there is a metabolic response to an individual vaccine, and that this changes over time, Sakda Khoomrung says.<br />– Primary metabolites such as lipids and amino acids – metabolites that are involved in your basic life functions and change when you move, exercise or get sick – are particularly sensitive to changes that occur during immune responses. These metabolites could potentially be used as metabolite biomarkers, helping to improve our understanding of vaccine safety, or identifying the metabolic responses to indicate side-effects. I personally believe this is an important piece of information that will greatly help for the development of the next generation of human vaccine.<br /><br />The BioVacSafe project has received funding until the end of February 2018. Sakda Khoomrung is confident the research will continue, but maybe in another form.<br />– It could be split up in different projects. We have shown interesting results, worth taking forward.<br /><br />Note: To read more about the BioVacSafe project, please <a href="">visit the project’s website</a>.<br /><br />In the top photo, from left: Researchers Intawat Nookaew, Partho Sen, Jens Nielsen and Sakda Khoomrung.<br /><br />Text: Mia Malmstedt<br />Photos: Martina Butorac<br />Mon, 30 Jan 2017 17:00:00 +0100 new member of KVVS<p><b>​Pernilla Wittung-Stafshede, Professor at the Department of Biology and Biological Engineering, has been elected as member of the prestigious academy KVVS. &quot;A proof that I’ve done something good,&quot; she comments.</b></p>​KVVS, Kungl. Vetenskaps- och Vitterhets-Samhället, is an interdisciplinary association established in 1778 with the main purpose to promote scientific research and support higher education.<br />The academy’s work includes – among other things – lectures, conferences, publishing, awarding of scholarships and various types of targeted actions. The members should be ready to act as representatives in various foundations, and they also give out prizes and awards. Furthermore, KVVS wants to initiate new areas of science, that are seen as important but has no current place in the universities.<br /><br />Professor Pernilla Wittung-Stafshede is head of the Chemical Biology division at Chalmers, and was recently elected as member of The Royal Swedish Academy of Sciences. Her work on protein folding has attracted much attention (<a href="/en/departments/bio/news/Pages/New-research-paves-the-way-for-future-pharmaceuticals.aspx">read more about her work here</a>). For her, the membership of KVVS is an additional sign of the high quality of her work. <br />– It’s very nice, and provides a proof that you are doing something good, that your scientific expertise is of interest, she says.<br /><br />To become a new member of KVVS, Pernilla Wittung-Stafshede has been nominated for her seat. She now takes her place in one of nine divisions; Class 4, Chemical Sciences. The division already includes two Biology and Biological Engineering’s professors: Ann-Sofie Sandberg and Jens Nielsen.<br />Pernilla Wittung-Stafshede still don’t know exactly what work the position at KVVS will entail.<br />– But I will soon! she says.<br />– For me, as a relatively new citizen of Gothenburg, this is also an excellent way to get to know scientists from other disciplines. I will get an expanded network. You never know what possible collaborations and research successes that might bring.<br /><br />Text: Mia Malmstedt<br />Mon, 16 Jan 2017 15:00:00 +0100 Professor at Nobel Week Dialogue<p><b>​This year&#39;s Nobel Week Dialogue – The Future of Food – featured Nobel Prize winners, prominent scientists and politicians. Professor Anne-Marie Hermansson from Chalmers Division of Food and Nutrition Science was invited to discuss sustainability.</b></p>​Nobel Week Dialogue is held each year on the day before the Nobel Prize ceremony. An ambitious program of lectures and panel discussions is organized. This year's theme was The Future of Food, and it attracted an audience of 1500. Chalmers Professor Anne-Marie Hermansson was a panelist to discuss sustainable food production.<br /><img width="350" height="450" class="chalmersPosition-FloatRight" src="/SiteCollectionImages/Institutioner/Bio/AnnMarieHermansson.jpg" alt="" style="height:356px;width:274px;margin:5px" /><br />– We have many challenges ahead of us. Food production has to be sustainable and innovative. The industry need to find new ways to produce food with less water and energy consumption, and with greater recycling. I would say that the water issue is our biggest challenge in the long perspective, she said.<br />– Climate change will affect us and one challenge is to understand how to use new crops and raw materials to produce foods. Nutritious food also has to be cheap, safe and available. Fluctuations in world market prices for raw materials will have an effect on availability and that will affect the neediest if no action is taken.<br /><br />Sustainability, waste and health aspects of food was on the menu during the day. Six Nobel laureates, professors, entrepreneurs and politicians like Isabella Lövin, Swedish minister for International Development Cooperation, engaged in the discussions.<br />– They really found people who knew the field and moreover were charismatic and got the audience to engage, Anne-Marie Hermansson says.<br />– They also did a great job of putting together interesting combinations, like the musician Patti Smith and Angus Deaton, last year's Nobel laureate in economics. I think the atmosphere was incredibly nice, and the audience was complicit. The organizers said this was their best event so far.<br /><br />Anne-Marie Hermansson was invited after sending in names of other knowledgeable persons in the research field:<br />– I was worried that they would arrange this without inviting any food scientists, so I tried to help. It ended up with them suggesting me. It took a while before I realized they actually wanted me to participate in the panel, she says.<br /><br />To have a well-organized and good arrangement within food and future challenges is important for the field, Anne-Marie Hermansson says. And the event also strenghtened Chalmers:<br />– It’s very good for Chalmers to have a representative at the Nobel Week Dialogue. Last year Lars Börjesson, who was then the Vice President, participated.<br /><br />Next year’s Nobel Week Dialogue will be in Gothenburg on December 9 2017.<br /><br />Note: You can watch <a href="">Nobel Week Dialogue on YouTube</a>. The panel discussion with <a href=";t=164s&amp;list=PLJE9rmV1-0uB6WhQcV6dsz_k_x_nDvlSp&amp;index=15">Anne-Marie Hermansson can be found here</a>.<br /><br />Text: Mia Malmstedt<br />Photo: Jan-Olof YxellTue, 20 Dec 2016 13:00:00 +0100 for a green future awarded with grants<p><b>​Two researchers at BIO, Johan Larsbrink and Nikolaos Xafenias, received Formas’ start-up grants for future research leaders. And Johan Larsbrink really got a full house, as he received the corresponding grant from the Swedish Research Council as well.</b></p><p>​Research to take further steps towards a fossil-free society. That is the basis for the applications that awarded Nikolaos Xafenias and Johan Larsbrink – both from the Division of Industrial Biotechnology – grants from Formas, each worth one million SEK per year for three years.<br />– This means I can lead my own research line within the division, Nikolaos Xafenias explains.<br /><br />Xafenias’ project involves converting waste and by-products from bioprocesses, to &quot;green&quot; products. Some background: Biorefineries, in which fuels and other chemicals are produced from biomass instead of crude oil, are a great way of moving production away from using fossil raw materials. But for biorefineries to succeed – and be truly environmentally friendly – we need to exploit the vast amounts of carbon dioxide and other carbonaceous residues that are co-produced.<br /><br />Nikolaos Xafenias wants to develop a technology to recycle this carbon, thus reducing the environmental impact. To do this, microbes that &quot;eat&quot; electricity from electrodes will be used. The microbes will be catalysts for the electrochemical conversions of waste products into alcohols, which are of value to the chemical and energy industries.<br />– This money will, among other things, support collaboration with other groups, Nikolaos Xafenias says.<br />– I have really competent partners: Jie Sun, Associate Professor at Chalmers Department MC2, who is working with graphene, and Professor Ieropoulos at the Bristol Robotics Laboratory, who is working with bioelectrochemical systems.<br /><br />Johan Larsbrink will take a closer look at enzymes for efficient decomposition of biomass. So-called enzymatic hydrolysis – a chemical process in which enzymes cleave the major components of the biomass into small molecules – is the most viable option for the decomposition of forest and agricultural residues for conversion to biofuels. But it’s also one of the most costly steps in today’s processes. Enzymes with several so-called catalytic domains may make the process much more efficient, but they are rare. Johan Larsbrink wants to determine the potential of these existing enzymes, and also develop entirely new ones.<br /><br />But Johan Larsbrink did not only receive money from Formas. He also got a start-up grant from the Swedish Research Council, for 3,2 million SEK over a four year period.<br />– It feels a bit strange, it hasn’t completely sunk in yet. But it’s really great, of course, he says.<br />The Swedish Research Council is investing in his project to develop and make the bioprocess that converts biomass into fuels more efficient. In recent years, much effort has been put into creating consolidated bioprocesses, where one microorganism can simultaneously break down biomass, absorb the energy and also produce valuable substances. Most studies have been done on <em>E. coli</em> bacteria and yeast, but the results have not been good enough. Johan Larsbrink has instead chosen to look at other bacterial species, to create organisms with the perfect properties.<br />– The money from both Formas and the Swedish Research Council will go to two new positions in my group. I already have two post docs, and good international and Swedish research connections that I will continue to work with, Johan Larsbrink says.<br /><br />In order to get the grants, the research projects need to meet certain criteria. They are measured not only by the scientific level – scientific issue, expertise and methodology – but also on the potential use for society.<br />– The fact that we received the grants not only shows that we as researchers are considered qualified, but also that our projects are considered promising and interesting, Nikolaos Xafenias says, and Johan Larsbrink adds:<br />– Our projects are in the bioenergy area. It’s a “hot” field right now, and very important from society’s standpoint. Furthermore, it is also important to show that you have good collaborations. Research is becoming increasingly interdisciplinary – it’s no longer possible to work in your own bubble.<br /><br />Text: Mia Malmstedt<br />Photo: Martina Butorac<br /></p>Tue, 20 Dec 2016 10:00:00 +0100 Nature’s own scissors<p><b>​Swedish forests can be used for the production of fuels or sustainable materials. But the structure of wood is recalcitrant and hard to decompose. Jenny Arnling Bååth’s research is on enzymes, that might help make wood more accessable for production of new materials.</b></p>​Forestry materials can be used to make bioethanol, biochemicals, textiles or materials to replace composites and plastics. In other words: Our Swedish forests are a gold mine for the production of sustainable alternatives.<br /><br />But there are some difficulties. One is the recalcitrance of wood – it’s very hard to decompose.<br /><br />Wood consists of three elements: Cellulose, lignin and hemicellulose. The cellulose is the core, while lignin and hemicellulose form a net and a glue that will protect the tree in its natural environment. <br />If the tree is completely decomposed we get simple sugars, which is used for the production of ethanol. But the different parts – the polymers – in wood can also be used for different things, and there is much to gain by cutting different bonds between the different wood polymers. Maybe we want to extract just the lignin, or just the hemicellulose, instead of decomposing it all into a mixture of the smallest building bricks.<br /><br />Jenny Arnling Bååth, a PhD student at the Department of Biology and Biological Engineering, is working with enzymes. Enzymes are nature’s own scissors, and cut bonds to help dissolve wood polymers, as well as making the food’s nutrients available in our stomachs. Jenny Arnling Bååth was recently able to show that a certain enzyme, glucuronoyl esterase, is able to cleave a specific bond in the so called lignin-carbohydrate complex. Her research might therefore pave the way for effective and intact extraction of wood polymers in industrial processes.<br />– We knew that this enzyme can cleave the bonds in model substrates, that is, in simplified chemicals or molecules. This time we grinded wood into a powder, processed it and got lignin and hemicellulose in pure fractions, she says.<br />– Our research is the first to show that this enzyme can actually cut the bonds in real substrate from wood. We have worked on this for a long time. It takes luck and time to succeed.<br /><br />The use of enzymes in industrial production is also environmental friendly. Without these natural scissors the wood will need treatment at high temperatures or with chemicals that are potentially dangerous. Furthermore, the enzymes only preform one task – the reactions will always remain controlled.<br />– We don’t know the impact of enzymes in industrial applications yet. Now we want to focus on gaining further knowledge; we want to know more about their resistance when it comes to things like pH or temperatures, and we also want to characterize them – what they do, how fast, and their similarities in regards to structure and function.<br /><br />The findings of Jenny Arnling Bååth is a result of the collaborations within Wallenberg Wood Science Center (read a separate article about the center here) which means that she has been able to perform analyses at KTH Royal Institute of Technology in Stockholm. She praises the benefits of the center:<br />– We work closely together with scientists from different disciplines. As biochemists, we look at enzymes, while other groups work with the same questions but from different angles. A person specialized in Wood Chemistry and a biochemist is not the same. It’s nice to keep on working together.<br /><br />Read more <a href="/en/departments/bio/news/Pages/Working-together-to-strengthen-science.aspx">about the Wallenberg Wood Science Center here</a>.<br /><br />Text: Mia Malmstedt<br />Photo: Martina Butorac<br />Wed, 30 Nov 2016 16:00:00 +0100