Context
Energy efficiency is essential:
- CO_{2}-abatement
- Cost efficiency

World energy-related CO_{2} emission savings by policy measure in the 450 scenario of the IEA.

Problem
The optimal integration of an electricity production cycle into a process. How to adapt the ORC to heat sources and sinks of a process?
Which are the relevant Constraints?

Many parameters:
- Working Fluids and Mixtures
- Single- or Multi-Stage, Extraction
- Optimal Size

Objective
Propose a methodology in order to identify a pareto-optimal ORC:
- quantitative criteria: efficiencies, cost, CO_{2}-equivalents, ODP, LCA
- qualitative criteria: toxicity, flammability

Acknowledgements
The authors thank Nestlé Suisse SA for all the support and letting us “speak around” their factory. The research, leading to these results, has as well received support from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 256790 (LOVE).

Methodology

Constrains
The number of decision variables can be reduced by:
- Limiting CO_{2}-equivalents/ GWP
- Limiting ODP
- Excluding flammability
- Excluding toxicity

The decision variable range can be reduced by:
- Limiting maximum pressure
- Limiting number of ORC-stages
- Limiting maximum components in working fluid

Evaluation of Objectives
- Thermodynamics:
 - Energy-Efficiency
 - Exergy-Efficiency
- Cost (relative and NPV)
- Global Warming Potential
- Ozone Depletion Potential
- Life Cycle Analysis

Methodology using process integration for identifying suitable Organic Rankine Cycles for waste heat valorisation

Matthias Bendig*, Prof. François Maréchal, Prof. Daniel Favrat
Industrial Energy Systems Laboratory (LENI)
École Polytechnique Fédérale de Lausanne (EPFL)

References