Freight transport services and autonomous vehicles

Michael Browne
University of Gothenburg
Potential benefits

• For example...
 – Lower costs – no driver and reduction in fuel cost
 – Increased safety – reduction in driver error
 – Greater opportunity for time shifting
 – The way we can use scarce urban space – for example the kerbside and loading docks/bays/zones
 – ...
Importance of freight in London

<table>
<thead>
<tr>
<th>% of all traffic by goods vehicle</th>
<th>All day – London Wide</th>
<th>All day – Central London</th>
<th>Central London AM peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trucks</td>
<td>5%</td>
<td>3%</td>
<td>7%</td>
</tr>
<tr>
<td>Vans</td>
<td>12%</td>
<td>13%</td>
<td>21.5%</td>
</tr>
</tbody>
</table>
Some of the challenges

• Variety – freight traffic is heterogeneous as are the products themselves

• Interfaces
 – Physical
 – Organisational

• Scale – at what scale do some activities become possible?

• Cost – who pays and how do the costs get passed on? Who benefits?
London freight and service traffic: An example of variety

Van traffic by sector – top 75%
(AM peak, Central London)

- General purpose / White van / Unknown: 39%
- Servicing and facilities: 13%
- Construction-related activity: 7%
- Food and drink (includes home deliveries): 7%
- 4%
- 4%
- 4%
- 2%

Truck traffic by sector – top 75%
(AM peak, Central London)

- Construction: 47%
- Food and drink: 18%
- Municipal vehicles: 12%
- 9%
- 5%
- 2%
- 2%

The interface challenge

• Physical
 – Road and kerbside
 – Buildings – origin, destination and in between

• Organisation
 – Supply chain partners
 – Roles of transport and logistics companies
 – Decision-making in an organisation context
Use of street space (road and kerbside)

Physical interfaces and complexity
Compétences spatiales, compétences d’action dans l’espace: La tournée du chauffeur-livreur.

Céline Cholez

Scale and speed of implementation

• Which sectors/areas will be first?
 – Small packages
 – Waste and refuse services
 – Closed/private areas (e.g. campus)

• Will the development be gradual and happen alongside existing freight services?
 – Labour relation issues
 – Disadvantage of parallel systems

• Will some cities lead?
Small vehicles – rapid change in past few years

Reflect on presentation by Anders Grauers – will these survive with the introduction of small autonomous vehicles?
Changes in costs

• Major potential to change cost structures
• What happens if transport costs fall?
 – More transport, more frequent deliveries, exchange transport for inventory
 – Reduced incentive to fully utilise the load space of the vehicle
• Who receives the benefits?
"Det automatiserade transportsystemets effekter på samhället"

Ett projekt inom det strategiska innovationsprogrammet för Drive Sweden, en gemensam satsning av Vinnova, Formas och Energimyndigheten.

Parter: SAFER, SHC, Chalmers, GU, SP, Trafikverket, Volvo Cars, VTI, Uniti, Göteborg Stad
Thank you
Acknowledgements

With acknowledgements to: (1) Ian Wainwright from Transport for London for the information and slides on Freight in London (2) Else-Marie Malmek (Malmeken AB) for the slide on SEVS for Autonomous Drive.

However, any views and comments expressed in the presentation are those of the presenter – Michael Browne.

Michael Browne
Professor of Logistics and Urban Freight Transport
University of Gothenburg
Department of Business Administration
School of Business, Economics and Law
Box 610, SE-405 30 Gothenburg, Sweden
email: michael.browne@gu.se
tel: +46 31 786 6798
Links and further information

(1) Urban Freight Platform an initiative within Northern LEAD at the Chalmers and the University of Gothenburg supported by the Volvo Research & Educational Foundations (VREF): http://www.chalmers.se/en/centres/lead/urbanfreightplatform/Pages/default.aspx

(2) Center of Excellence: Sustainable Urban Freight Systems (supported by VREF) for webinars and other information available see: https://www.coe-sufs.org/

(3) METROFREIGHT Center of Excellence (supported by VREF) for more information see: http://priceschool.usc.edu/metrofreight-the-localglobal-challenge-of-urban-transportation-planning/