Hydrodynamics and heat transfer in vertical falling films

Department of Chemical Engineering (A Åkesjö, L. Vamling)
Valmet (M Gourdon)
Tetra Pak (F. Innings)
Department of Applied Mechanics and Maritime Sciences (Srdjan Sasic)
General properties of falling film units

• A thin liquid film flowing down an inclined or vertical wall

• Excellent heat and mass transport characteristics (large contact areas and high heat transfer at low flow rates)

• Numerous applications - food and pulp & paper industry

• Large units with long plates or tubes as heat transfer surfaces

• Energy intensive - improving the energy efficiency substantially improves the overall energy economy
Complex and challenging from perspective of fluid mechanics.
Goals

• Understand hydrodynamics and heat transfer of large-scale units

• Introduce measures for improving heat transfer – and understand possible improvements
Backflow

Curvature of the wave grows

Pressure gradient increases

Fluid is forced into internal recirculation (with a negative velocity)

Increased bulk mixing

(normalized film thickness)

(pressure gradient)

(streamwise velocity)
Measurements: laser + high-speed imaging

Synchronized film thickness measurements with high-speed imaging

Two observed waves have collided into a single larger wave
From measurements on smooth surfaces
And if modification of heat transfer surfaces is introduced...
...the results are promising
Wave dynamics significantly different in the two cases

Modified heat transfer surfaces

Smooth heat transfer surfaces
Possible explanation in the existence of **recirculation zones** after surface modifications

Surface modifications ➔ Improved bulk mixing ➔ Improved heat transfer

Negative velocity
Summary of improvement factors in heat transfer

<table>
<thead>
<tr>
<th>kg/ms</th>
<th>0.120</th>
<th>0.275</th>
<th>0.473</th>
<th>0.786</th>
<th>1.100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shape 1

\(t = 1, 1, 1.95, 1.66, 1.42 \)